Asynchronous Coordinate Descent under More Realistic Assumptions

نویسندگان

  • Tao Sun
  • Robert Hannah
  • Wotao Yin
چکیده

Asynchronous-parallel algorithms have the potential to vastly speed up algorithms by eliminating costly synchronization. However, our understanding of these algorithms is limited because the current convergence of asynchronous (block) coordinate descent algorithms are based on somewhat unrealistic assumptions. In particular, the age of the shared optimization variables being used to update a block is assumed to be independent of the block being updated. Also, it is assumed that the updates are applied to randomly chosen blocks. In this paper, we argue that these assumptions either fail to hold or will imply less efficient implementations. We then prove the convergence of asynchronous-parallel block coordinate descent under more realistic assumptions, in particular, always without the independence assumption. The analysis permits both the deterministic (essentially) cyclic and random rules for block choices. Because a bound on the asynchronous delays may or may not be available, we establish convergence for both bounded delays and unbounded delays. The analysis also covers nonconvex, weakly convex, and strongly convex functions. We construct Lyapunov functions that directly model both objective progress and delays, so delays are not treated errors or noise. A continuous-time ODE is provided to explain the construction at a high level. Mathematical Subject Classification 90C30, 90C26, 47N10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbed Iterate Analysis for Asynchronous Stochastic Optimization

We introduce and analyze stochastic optimization methods where the input to each gradient updateis perturbed by bounded noise. We show that this framework forms the basis of a unified approachto analyze asynchronous implementations of stochastic optimization algorithms. In this framework,asynchronous stochastic optimization algorithms can be thought of as serial methods operatin...

متن کامل

A Unified Approach to Analyzing Asynchronous Coordinate Descent and Tatonnement

This paper concerns asynchrony in iterative processes, focusing on gradient descent and tatonnement, a fundamental price dynamic. Gradient descent is an important class of iterative algorithms for minimizing convex functions. Classically, gradient descent has been a sequential and synchronous process, although distributed and asynchronous variants have been studied since the 1980s. Coordinate d...

متن کامل

Asynchronous Parallel Greedy Coordinate Descent

In this paper, we propose and study an Asynchronous parallel Greedy Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with bounded constraints. At each iteration, workers asynchronously conduct greedy coordinate descent updates on a block of variables. In the first part of the paper, we analyze the theoretical behavior of Asy-GCD and prove a linear convergence rate. In the...

متن کامل

Asynchronous Accelerated Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a widely used optimization algorithm in machine learning. In order to accelerate the convergence of SGD, a few advanced techniques have been developed in recent years, including variance reduction, stochastic coordinate sampling, and Nesterov’s acceleration method. Furthermore, in order to improve the training speed and/or leverage larger-scale training data...

متن کامل

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Stochastic Dual Coordinate Descent (DCD) is one of the most efficient ways to solve the family of `2-regularized empirical risk minimization problems, including linear SVM, logistic regression, and many others. The vanilla implementation of DCD is quite slow; however, by maintaining primal variables while updating dual variables, the time complexity of DCD can be significantly reduced. Such a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017